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Note 

Alternative to Pad6 Technique for Iterative Solution 

of Integral Equations 

It is well known that when the kernel of Fredholm integral equations of the second kind has 
the absolute magnitude of one or more eigenvalues greater than unity the Neumann series of 
such equations diverge. Pade technique is a practical way for constructing the correct solution 
from the divergent Neumann series. Here we propose an alternative method for the iterative 
solution of such equations, which relies on writing auxiliary integral equations with “weaker” 
kernels so that the auxiliary equations have a convergent Neumann series. Then the solution 
of the original equation is expressed in terms of the (convergent Neumann series) solution of 
the auxiliary equations. The kernel of the auxiliary equations can systematically be made 
weaker and the rate of convergence of the Neumann series of the auxiliary equations improved 
in order to make the method more useful. The method is illustrated numerically in certain 
cases. 

1. INTRODUCTION 

In this paper we develop a practical method for the iterative solution of Fredholm 
integral equations [ 1 ] of the second kind for the unknown function y(x), 

or in schematic operator notation 

.Y=f+KJJ, (2) 

where y and f are real or complex valued functions in L*(a, b) and K is a square 
integrable kernel. As the equation is of the Fredholm type, the Fredholm alternative 
is valid and Eq. (1) can be uniformly approximated by a matrix equation of finite 
rank, which can be solved by matrix inversion. But in the case of a realistic and 
complicated problem the dimension of the resultant matrix equation could be large 
and inversion of a large matrix is not a trivial numerical task. A simple alternative 
(to the method of matrix inversion) is the Liouville-Neumann method of successive 
substitutions [ 11, which is commonly known as the iterative method for the solution 
of Eq. (1). Such iterative method works for sufficiently weak kernel K. In 
mathematical language the so-called Neumann series converges if and only if all the 
eigenvalues q, of the kernel K, defined by [ 1,2] 

Kw, = II, w, (3) 
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have absolute values smaller than unity, 

Irl”l < 1. (4) 

In most of the physically interesting problems the above condition is not satisfied 
and the Neumann series of Eq. (1) diverges. But one can use the technique of Pade 
approximation [3] to solve integral equation (1) by extracting information from its 
Neumann series, even if the series diverges. Although the Pade technique has become 
a useful and efficient tool for solving Eq. (l), it has its limitations also. The number 
of terms of the Neumann series needed to construct accurate Pade approximants 
could be large enough to render the method unattractive in practice. Secondly, there 
are questions about the uniformity of convergence of Pade approximants and in 
particular about the occurence of poles in the PadC approximants, which are not 
related to the solution of Eq. (1). 

Here we propose a method for iterative solution of Eq. (1). The method relies on 
writing auxiliary equation(s) whose kernel has eigenvalues satisfying condition (4). 
Then the auxiliary equations have convergent Neumann series solutions. The solution 
of the original Eq. (1) is then expressed in terms of the solutions of the auxiliary 
equations. The convergence properties of the Neumann series for the auxiliary 
equations of the present method can be improved systematically. The present method 
is simple to use and can be an efficient method for solving Eq. (1). 

The method is based on the following simple algebraic manipulations. The 
equation we would like to solve is written as 

yyyx) = K,(x) + j K,(x, OYY’(~) d<> a<x<b, (5) 

where in Eq. (5) and in the rest of the paper the limits of integrations are from a to b 
unless otherwise specified. The notation in Eq. (5) is slightly changed from that of 
Eq. (1) for the sake of future convenience. In Eq. (5) y:“’ is the unknown function, K, 
is the inhomogeneous term and K, is the kernel. Next we introduce the following 
auxiliary equations 

Y:“‘(X) = K,(x) + j Kz(x, tLd”%) dil 

and 

y:"(x) = K,(x, t,) + j&(x, 5)r:"(O dt 

with 

J&(x, <) = K,(x, r) - Klk id I@)~ 

(6) 

(7) 
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where r, is a point conveniently chosen in (a, b) and y,(r) is an arbitrary flexible 
function. Using Eq. (7), Eq. (5) can be written as 

y;“‘(x) = K,(X) + K,(x, r,) T’, + j&(x, %4°‘(0 dt (8) 

with 

CT, = i dt~,(t)y’,~‘(O. (9) 
From Eqs. (6) and (8) we have 

y:“‘(x) = y:“‘(x) + y:“(x) CT,, (10) 

which is the key equation of the present method. Equation (10) is still an integral 
equation in yI”’ but with a separable kernel and hence can be solved “analytically.” 
The solution of Eq. (10) is given by 

s dt y,(Oy:“‘(<) Yi”Y-4 = Y:“‘(x) + A”(4 1 _ J’ dT y (gpyr) ’ 
1 2 

Equation (11) uses the solution of two auxiliary integral equations-Eqs. (6)--with 
kernel K, given by Eq. (7). If the function y,(r) of Eq. (7) is conveniently chosen so 
that the second term on the right-hand side of Eq. (7) is a good approximation to 
K,(x, r), then K,(x, c) will be much weaker than K,(x, <) of Eq. (5). Under these 
circumstances we can hope that Eqs. (6) will have convergent Neumann iterative 
series solutions. 

The present method is based on the convergent Neumann series solution for 
Eqs. (6) and the construction of the solution of Eq. (5) through Eq. (11). If with the 
best choice for y,(r) the Neumann series for Eqs. (6) diverges or converges slowly we 
shall show how to improve the rate of convergence of the method systematically. 

In Section 2 we critically discuss the method presented in this section and show 
how one can systematically improve the method. In Section 3 we illustrate the 
method numerically in certain cases and finally in Section 4 we give a brief summary 
and concluding remarks. 

2. THE METHODS 

A. Definition of the Basic Method 

In this subsection we critically discuss the method presented in Section 1. Although 
the basic equations of the method have been described in Section 1 we still have to 
define the method properly, because so far we have said nothing about how to choose 
the function y,(r) of Eq. (7). As has been explained in Section 1 the success of the 
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method depends on a correct choice of yi. For a sufficiently small operator norm 
11 K, I], Eqs. (6) will have convergent Neumann series. Though we are not directly 
concerned about eigenvalues of K,, it should be remembered that convergent 
Neumann series for Eqs. (6) imply that all the eigenvalues of K, have their absolute 
magnitude smaller than unity and vice versa [ 1, 21. So we should choose yr so that 
K, satisfies this criteria. There is another restriction on the choice of y,. The function 
y, should be so chosen that all the integrals in the method remain well defined and 
finite. We shall not present a rigourous theory about how to choose y1 so that the rate 
of convergence of the Neuman series of Eqs. (6) is the fastest. But we choose y1 based 
on simple intuitive arguments in order to have satisfactory rate of convergence. 

An observation which helps in the choice of yr is that if 

Y,G) = 13 (12) 

K, defined by (7) satisfies K,(x, <,) = 0. K, will be small at other points if y, is 
conveniently chosen. In this paper we shall mainly be concerned with two different 
choices of yr(<). 

First we choose: 

(13) 

This choice of y,(r) satisfies Eq. (12) and K,(x, r) defined by Eq. (7) is zero for 
x = <, or r = <, . If x = <r is the point where K,(x, x) is large K2(x, <) will be zero at 
x = <, or < = <, . This choice of y1 will make K,(x, r) small everywhere because the 
second term on the right-hand side of Eq. (7) is the Bateman approximation [4] for 
K,(x, <), which is exact around the point x = <, or < = <i and is expected to be a good 
separable representation to K, over the whole domain of x and <. Of course, we are 
not claiming that choice (13) for y, is the ideal choice. 

A better choice of y,(r) could be found if we recall the fact that we would like to 
make the magnitude of K2(x, <) as small as possible for all <. The choice of yi given 
by Eq. (13) is designed to make the second term on the right hand side of Eq. (7) a 
good approximation to the first term, e.g., K,(x, r), in a pointwise sense. By doing 
this we are demanding too much from r,(r) in view of the fact that K, is in general a 
nondegenerate kernel and a simple Bateman approximation is not the best approx- 
imation to it. A better and weaker condition can be imposed on r,(r), which requires 
the magnitude (K,(x, r)l to be as small as possible for all x. It is clear from Eq. (6) 
that such a choice will improve the rate of convergence of the Neumann series. A 
simple way to achieve this is to demand that [K2(x, r)]” has a minimum as a function 
of y,(r). As y,(C) is independent of the parameter x we prefer to integrate [K,(x, t)]’ 
in variable x with respect to some weight function w,(x) and demand 

6 I dx ol(x)[&(x, t)]’ = 0, (14) 
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where 6 denotes variations with respect to y,(c). Choice A of y, minimizes the 
integrand K,(x, 0 of Eq. (14) in a pointwise sense and minimizing the integrand in a 
pointwise sense is not the optimal way to minimize an integral. The optimal way is to 
satisfy Eqs. (7) and (14), which immediately yields the following choice for y, 

Choice B: ri(<) = I u!x w,(x>K,(x3 r) Kl(X, Cl) 
1 du w,(x>K1(x, MK,(X~ t-1) * (15) 

This choice of yi also satisfies Eq. (12) and hence enjoys the associated advantages. 
It is easy to check that the second derivative of the integral in Eq. (14) with respect 
to y,(r) is positive if o,(x) is a positive function in (a, b). So r,(r) given by (15) will 
really give us the desired minimum. We take a very simple form for wi(x), e.g., 
wi(x) = x”, in our numerical examples, where n is a small positive or negative integer 
provided that the integrals in (15) are finite with this choice of oi(x). Such an o,(x) 
suppresses or enhances parts of the integral in (15) and generates a wide class of 
ri(O 

Both these choices-choices A and B of y,(r)-have another advantage that all the 
integrals in Eqs. (6)-( 11) remain finite and well defined with these choices. The only 
arbitrariness we have now is in the choice of the point <, in both the cases and in the 
choice of the function w,(x) in Choice B. We shall see in our numerical studies that 
this arbitrariness can be turned to good advantage-we can vary <,, and w, in order 
to obtain the best convergence of the Neumann series of Eq. (6). 

B. Improvement of Convergence 

If the rate of convergence of Eqs. (6) is not satisfactory we may apply the 
reduction procedure of Section 1 once again to Eq. (5) in order to have auxiliary 
equations with better convergence properties. For this purpose we introduce the 
following auxiliary equations 

y:“‘(x) = K,(x) + j K&, 0 Y!“‘(<) dr, 

and 

with 

Y!“(X) = K,(x, t,) + j, K& t)y$“(t) dt, 

Y:“(X) = K2&, t2) + ~Kb, OY:*‘(<) dt 

K,(x, 0 = K,(x, 0 - K2@3 t2) 1’2(05 

(16) 

(17) 
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where & is a point conveniently chosen in (a, b) and y2(<) is an arbitrary flexible 
function. Using Eqs. (7) and (17), Eq. (5) can be written as 

with 

(18) 

(19) 

and . W , defined by Eq. (9). From Eqs. (16) and (18) we have 

yY’(x) = y:“‘(x) + y:“(x) CT1 + y:“(x) 3*. (20) 

Using the definitions (9) and (19) it is easy to see that 3, and rz satisfy the 
following set of algebraic equations 

3, = dxy,(x)[y:o’(x) +y:“(x)Tl +y:“(4921, 
I 

;Y2= 
I 

dxy,(x)~~‘(x)+y:“(x)& +y:“(x)&]. 

(21) 

Equations (20) and (21) use the solutions of the auxiliary equations (16) with the 
kernel K, defined by Eq. (17). We have seen how to make K, weaker than K, with a 
proper choice of y,. Similarly we hope to make K, weaker than K, with a proper 
choice of y2. As before, the function y2 should be so chosen that all the integrals in 
the method remain well defined and finite. 

As before, we consider the following two choices of y2: 

Choice A: r2(f$ = K2((2 9 4 
K2K2 9 6) ’ 

and 

l h wz(x) K2b 0 K2@9 t2) 

Choice B: ‘*(‘) = j dx w*(x) K2(x, r2) K,(x, &) ’ (23) 

(22) 

which follow immediately from Eqs. (13) and (15) for yi. Here w*(x) is again a 
weight function. If we choose yi according to (13) and y2 according to (22) we 
immediately have the following desirable property for K, : K3(x, t) = 0, when x = c, 
or r2 or < = c, or c2. The point x = r, is chosen where K,(x, x) is large. Similarly we 
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choose x = & where K,(x, x) is large. For reasons explained after. Eq. (13) K, will be 
much smaller than K, in the entire domain (a, b). Hence the kernel K3(x, {) apart 
from being zero for x or l= l, or & is also much smaller than K, and hence 
Eqs. (16) are expected to have a convergent Neumann series. 

On the other hand if we choose y, according to Eq. (15) and yz according to 
Eq. (23) we only have K3(x, c) = 0, when < = & and not when x = <, or <, or r = {, . 
But this choice (called Choice B) is more efficient than the choice A in yielding a 
rapidly convergent Neumann series as we shall see in the following. 

If K,(x, <) is not a smooth function over the domain (a, b) of x and c and if the 
typical value of K,(x, 5) is large compared to unity, then Eqs. (16) may not have a 
convergent Neumann series. But now it is not difficult to make a generalization of the 
method by introducing successive subtractions in the kernel till we have a convergent 
Neumann series for the auxiliary equations. 

C. Generalization 

The generalization of the discussion of the previous subsections is simple to 
implement in practice. We introduce the linal kernel KN through successive 
subtractions 

Ki+ ‘(~9 0 = Ki(x, 4 - Ki(-G ti> Yi(G i = 1, 2 ,..., N - 1. (24) 

The auxiliary equations are introduced by 

y:‘(x) = K,(x) + (K&, &~;‘(l) & 

y;‘(x) = K,(x, t,) + j- Kv(x, <h&%3 dL 

(25) 
y$‘(X) = Ki(x> li) + .f KN(x, <) J’C’(<) dt, 

Using Eq. (24), Eq. (5) can be written as 

J’\“‘(X) = K,(X) + Nf’ Ki(X, <i) Ti + J KN(X, C)J’\O’(O d<> 
i=l 

with 

‘Ti = 1 &;/i(t)YlO’(t)* 

(26) 

(27) 
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From Eqs. (25) and (26) we have 

N-l 

J+“‘(X) = Jf’(X) + 2 V$‘(X) 3i 3 

i=l 

with CWi satisfying the following set of linear equations: 

(28) 

(29) 

Equations (28) and (29) use the solution of the auxiliary equations (25) with the 
operators Ki defined by Eq. (24). We have seen in the last subsection how to make 
the kernels K, and K, successively weaker in comparison with K,. So with proper 
choice of yi Ki is expected to be much weaker than K,. As before, the functions yi 
should be so chosen that all the integrals in the method remain well defined and 
finite. 

Following the previous subsections we consider the following choices for yi, 

Ki(C 3 0 
Choice A: Yi(O = Ki(ri, c) . 

I dx WI(X) K/(X, 0 Ki(x, <i) 
Choice B: “(‘) = j dx q(x) Ki(x, ti) Ki(x, &) ’ 

(30) 

(31) 

If we choose yi according to (30) we immediately have the following desirable 
property for K, : KN(x, [) = 0, when x = r, or rz or C3 or ... rN-, or < = <i or & or c3 
or . . . rN-,. 

3. NUMERICAL CALCULATIONS 

We consider the numerical solution of 

Y(X) = K,(x) + 1 j’ K,(x, 4 ~$3 dt> 
0 

(32) 

where the kernel K, will be assumed to have the two following forms: 

K,(x,<)=O.l(x+r+ 1)5, (33) 

and 

K,(~,t)=(x+t)~(x+t+ 1))‘. (34) 

The success of the method lies in a convergent Neumann series for Eq. (25). So in 
this section we study the convergence properties of such equations-in particular that 
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of Eq. (6) after one subtraction. For this purpose we approximate the integral in 
Eq. (32) by a discrete sum by using 16-point Gauss quadratures between 0 and 1. We 
shall study the convergence properties of the following series 

Sy’ = i #, i= 1, 2, (35) 
j=l 

where K, is defined by Eqs. (33) and (34) and K, by Eq. (7). The convergence of the 
series (35) will determine the convergence of the method. For example, for i = 1 (35) 
determines the rate of convergence of the original equation (5). For i = 2 it 
determines the rate of convergence of the once subtracted auxiliary equations (6) and 
so on. 

We studied the rate of convergence of Eqs. (5) and (6) for the above kernels for a 
wide range of values of 1 and the variables <i and o,(x) = xn in Eqs. (13) and (15) 
and reached the following general conclusions. As expected convergence of Eq. (6) is 
more difficult to obtain when 1 is large. Choice A of y,(r) given by Eq. (13) was 
good for obtaining a rapidly convergent Neumann series of Eq. (6) for small L 
(,ls 5). But for large 1 (12 10) Choice B of L,(r) given by Eq. (15) was by far 
superior to choice A in finding a rapidly convergent Neumann series. In the case of 

TABLE I 

$(x,0.9648) 

i X I=2 I=4 I=6 I=8 

1 0.375(3) 0.148(7) 0.587( 10) 0.233(14) 
0.9856 

2 -0.3550 -0.3596 -0.3596 -0.3596 

1 0.290(3) 0.115(7) 0.455(10) 0.180(14) 
0.8494 

2 0.0192 0.0196 0.0196 0.0196 

1 0.171(3) 0.678(6) 0.268( 10) 0.106(14) 
0.5877 

2 0.3819 0.3867 0.3867 0.3867 

1 0.768(2) 0.305(6) 0.121(10) 0.478( 13) 
0.2393 

2 0.43 11 0.436 1 0.436 1 0.436 1 

Note. $(x, 0.9648) for various x and I for the kernel given by Eq. (33). i = 1 refer to the Neumann 
series for the original kernel and i = 2 refer to the once subtracted kernel. We used 5, = 0.33 19 and 
w,(x) = x2. This <, was a point of the integration mesh. The number in the parenthesis gives the 
exponent of 10 which multiplies the associated expression. 
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Choice B the results were not strongly sensitive to O,(X) (=x”), provided that n was a 
small positive integer. n can not be negative in this case because such an n will lead 
to divergent integrals in Eq. (15) with K, given by (33) and (34). Finally we find that 
our results are moderately sensitive to <,. 

We show numerical results only for large 13. and for the choice B of yi. All values 
of n in o,(x) = X” (0 < n < 4) gave good convergence but the results for n = 2 
appeared to be slightly better than others. We show numerical results in Tables I and 
II for Choice B of y, with wr(x) =x2. Some experimentation was done to choose the 
best r, in each case and it was found that the best 6, was always near the middle of 
the range of integrations (0, 1) rather than near its ends. Table 1 shows the elements 
S:(x, 0.9648) for the series (35) for the kernel defined by (33) for various x and Z and 
for i = 1, 2. We used <i = 0.3319, w,(x) =x2, and L = 10. With this L the largest 
eigenvalue ,U of the kernel given by (33) is given by p = 62.9. This means that the 
Neumann series of the original equation is diverging very rapidly, the ratio of 
successive terms in the Neumann series after a large number of iteration being equal 
to p. Table II shows the same elements of (35) but for the kernel defined by (34) for 
<, = 0.5069, w,(x) =x2, and L = 10. In this case ,U = 34.9. From Tables I and II we 
find that the convergence is satisfactory. The other elements of the series (35) 
converge equally rapidly. 

TABLE II 

S:(x, 0.9648) 

i x I=2 I=4 I=6 I=8 

1 0.175(3) 0.2&6) 0.260(9) 0.317(12) 
0.9856 

2 -0.3352 -0.3505 -0.35 11 -0.3512 

1 0.116(3) 0.141(6) 0.172(9) 0.209( 12) 
0.8494 

2 0.1221 0.1278 0.1281 0.1281 

1 0.468(2) 0.572(5) 0.696(8) 0.848( 11) 
0.5877 

2 0.3570 0.3722 0.3729 0.3730 

1 0.105(2) 0.128(5) 0.156(8) 0.191(11) 
0.2393 

2 0.1817 0.1905 0.1909 0.1909 

Nofe. Same as in Table I for the kernel given by Eq. (34) and for 5, = 0.5069 and w,(x) =x2. 
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4. DISCUSSION 

In this paper we propose a new method for solving Fredholm integral equations of 
the second kind. The present method is an iterative method and is simple to 
implement in practice. After solving Eqs. (25) by iteration one still has to solve 
Eq. (28) with degenerate kernel. So the present method should be considered as a 
combination of the degenerate kernel method and the Liouville-Neumann method of 
successive substitutions. 

We study the method numerically for both the choices of the arbitrary function y 
and find that both of them give satisfactory convergence after one subtraction if the 
rate of divergence of the original equation is not too large, i.e., when the largest eigen- 
value of the kernel ,u 5 10. But when the Neumann series of the original equation 
diverges very strongly the choice B of y was more efficient than Choice A of y in 
obtaining a rapidly convergent Neumann series of the auxiliary equation after 
introducing one subtraction in the kernel. To obtain similar convergence with Choice 
A two subtractions are usually needed. So we have shown numerical results for the 
choice B of the auxiliary function only. The convergence is quite satisfactory. The 
original Neumann series in both these cases were diverging very strongly the rate of 
divergence ,D being 35 and 63, respectively. After one subtraction the series converges 
satisfactorily, the ratio between successive terms in the Neumann series being of the 
order of 0.25. Clearly if the original Neumann series diverges at a much faster rate or 
if the original kernel has a very complicated structure one subtraction in the kernel 
may not be sufficient to obtain a convergent Neumann series after a small number of 
iterations. But in such cases the technique of Pade approximation will also require a 
large number of iterations. At least in the present method we can introduce a second 
subtraction which will increase the rate of convergence. 

Although some experimentation is needed to find the ideal y in each case the 
present method has some advantages. Firstly, using an appropriate quadrature routine 
for the small number of integrals required by the present method produces accurate 
numerical results. On the other hand the problem of inverting large matrices has been 
avoided. Secondly, the present method is somewhat simpler than the method of Padi 
approximants because numerically it is more complicated to construct the Pade 
approximants using the iterative solution than to construct the solution in the present 
method using the iterative solution of the auxiliary equations. Finally, there are 
serious questions on the uniformity of convergence of the method of Padi approx- 
imants, since an [N, M] Pade approximant has N poles, not all of which are related 
to the solution of the original equation. In the present method we use convergent 
iterative solution of auxiliary equations, eliminating the problem of spurious poles or 
singularities. 

We applied the present method to some problems of interest in physics [5 ]. We 
solved Lippmann-Schwinger and Faddeev-type scattering equations for two- and 
three-particle systems and confirmed the above conclusions. In the case of two- 
nucleon scattering with a rather singular Reid soft core potential an accuracy of 
0.005% was reached after eight iterations when we introduced two subtractions in the 
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kernel [5]. In the case of the three-nucleon scattering problem in the spin 3/2 Amado 
model the same accuracy was reached after two iterations [5] whereas the method of 
Padl approximants needed about eight iterations to achieve similar precision. In the 
second problem we achieved an accuracy of 0.0001% after four iterations. It will be 
difficult to obtain similar accuracy in degenerate kernel methods or other methods 
using matrix inversions with so little numerical work. We conclude that the present 
method is an efficient alternative for solving integral equations. 
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